Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The lack of community-relevant flood informational resources and tools often results in inadequate and divergent understandings of flood risk and can impede communities' ability to function cohesively in the face of increasing flood threats. The current study reports on a set of workshops that the authors conducted with various groups (citizens, city engineers and planners, realtors and builders, and media representatives) within a flood prone community to evaluate how novel hydroinformatic tools that include hydrodynamic modeling, geospatial visualization, and socioeconomic analysis can enhance understanding of flood risk and engagement in flood risk mitigation among diverse community members. The workshops were designed to help identify stakeholder preferences regarding key functionality needed for integrated hydroinformatic technologies and socioeconomic analyses for flood risk reduction. Workshop participants were asked to use and comment on examples of prototype flood risk informational tools, such as: (1) flood damage estimation tool, (2) drivability and emergency accessibility tool, and (3) community-scale social and economic metrics tool. Data gathered from workshops were analyzed using qualitative analysis based on a grounded-theory approach. Data were coded by hand based on themes identified by the research team and incorporated deviant case analysis to ensure minority opinions was represented. The study results are focused on the following main themes and how flood tools can address them: (1) improving the understanding of flood risk and engagement in flood risk mitigation, (2) reducing the gap between individual and community risk, (3) challenges in communicating flood risk information, (4) enhancing relevance to and engagement of the community, and (5) enabling actionable information. Our research demonstrates the need for community-anchored tools and technologies that can illustrate local context, include local historical and simulated events at multiple levels of community impact, enable analyses by flood professionals while also providing simplified tools of use by citizens, and allow individuals to expand their knowledge beyond their homes, businesses, and places of work.more » « less
-
ABSTRACT The abundance of Ru in chromite has been suggested as an indicator of sulfide liquid saturation in komatiites. The komatiite magma-derived Archean Coobina intrusion is known to be barren in terms of sulfide mineralization. Therefore, the Coobina intrusion can serve as a useful case study to test the applicability of Ru abundance in chromite as a potential indicator for sulfide mineralization, as well as for better understanding the PGE-chromite association in general. The Coobina intrusion is a highly deformed layered intrusion interpreted to be a flared dike. It contains multiple massive chromitite seams that have been recently mined for metallurgical-grade chromite. In this study, 18 samples from chromitite seams throughout this intrusion are investigated for their whole-rock platinum group element (PGE) contents, which are compared to their chromite mineral chemistry (including PGE content), the platinum group mineral (PGM) mineralogy, and Re-Os isotope systematics. Each sample has a similar chromite major and minor element chemistry, but a unique trace element signature, even within the same seam. In general, there are higher concentrations of Ru (>300 ppb) within chromite in the southeast (toward the feeder dike) and lower concentrations (<50 ppb Ru) in the northwest. At a sample scale, Ru in the whole rock and Ru in solid solution in the chromite are inversely correlated, while Ir shows a positive correlation between the whole rock and chromite mineral chemistry, indicating differing partitioning behaviors within the iridium-group PGE (IPGE = Os, Ir, Ru). The inverse correlation between Ru in solid solution within chromite and Ru in whole-rock chromitite suggests that, for seams with high Ru in whole rock, Ru is occurring within separate PGM phases. This is supported by the observation that the samples with high whole-rock Ru also have a high number of visible metal alloy and/or PGM inclusions. Although these inclusions are not necessarily Ru-rich phases, their presence suggests that there is a preference for these samples to form nuggets, which may restrict Ru partitioning into the chromite crystal structure. We suggest that the low Ru values in the Coobina chromite are a result of transient sulfide saturation. The Re-Os isotopic composition of the Coobina chromitite is chondritic [γ187Os(3.189 Ga) = −0.63 ± 0.21] and is consistent with derivation of the Coobina parental magma from the convecting upper mantle source, providing evidence for the mantle origin of the Coobina PGE inventory. If using chromite as a detrital indicator mineral for magmatic sulfide exploration, it must be kept in mind that transient sulfide saturation within chromitite seams may give a false positive signature.more » « less
-
Many communities across the USA and globally lack full understanding of the flood risk that may adversely impact them. This information deficit can lead to increased risk of flooding and a lack of engagement in mitigation efforts. Climatic changes, development, and other factors have expedited changes to flood risk. Due to these changes, communities will have an increased need to communicate with a variety of stakeholders about flood risk and mitigation. Lafayette Parish, Louisiana, USA, having recently experienced a major flood event (the 2016 Louisiana Floods), is representative of other communities experiencing changes to flood impacts. Using focus groups, this study delves into better understanding the disconnect between individual and community perceptions of flood risks, and how emerging hydroinformatics tools can bridge these gaps. Using qualitative analysis, this study evaluated the resources individuals use to learn about flooding, how definitions of community impact flood mitigation efforts, how individuals define flooding and its causes, and where gaps in knowledge exist about flood mitigation efforts. This research demonstrates that individuals conceive of flooding in relationship to themselves and their immediate circle first. The study revealed division within the community in how individuals think about the causes of flooding and the potential solutions for reducing flood risk. Based on these results, we argue that helping individuals reconceive how they think about flooding may help them better appreciate the flood mitigation efforts needed at individual, community, and regional levels. Additionally, we suggest that reducing gaps in knowledge about mitigation strategies and broadening how individuals conceive of their community may deepen their understanding of flood impacts and what their community can do to address potential challenges.more » « less
An official website of the United States government
